

2025 SEE/MAPLD Workshop Call for Papers May 12 – 16, 2025 San Diego Marriott La Jolla, La Jolla, CA

Please join us for 2025 Single Event Effects (SEE) Symposium and Military and Aerospace Programmable Logic Devices (MAPLD) Workshop to be held jointly May 12-16, 2025 in La Jolla, California.

We are seeking contributions in the areas below, but all submissions will be reviewed. Four sessions are available: *SEE, MAPLD, Combined and Poster.* The Combined Session includes submissions that cross SEE and MAPLD themes. The Poster Session can include SEE, MAPLD, or Combined content. Please refrain from technical content reasonably classified as product marketing. Paper submissions are due on February 21, 2025.

We especially encourage submissions focusing on, but not limited to:

- Standards and methods (new or adapted)
- Heavy-ion, proton, and alternative SEE testing
- Test facility updates
- Space environments
- Modeling and Simulation approaches (new or adapted)
- Applications of AI/ML to SEE testing, analysis, and mitigation
- Mission applications and highlights enabled by FPGAs/SoCs
- Device failure modes and reliability
- Reconfigurable High-Performance Computing, evolvable hardware and security
- NextGen Platforms and Sensors Enabled by FPGAs/SoCs
- Tool Enablement

Abstract Submission Guidelines:

- Formats: Word (.docx), PowerPoint (.pptx), or (.pdf) only.
 - Word or PDF: 1-4 pages maximum.
 - PowerPoint: Title page with authors and affiliations, motivation/context/overview, available relevant results, and anticipated conclusions.
 - Utilize templates available on our website.
- Submit online (<u>https://www.seemapld.org/</u>) before the deadline.

Submission Deadline: February 21, 2025

The conference committee will notify all prospective speakers of acceptance status by March 21[,] 2025.

SEE Symposium / Combined* / MAPLD Session Options

Single-Event Phenomena, Mechanisms & Modeling:	FPGAs/SoCs, PLDs, New Devices, and Design :
Upsets, Functional Interrupts, Transients, Latchup, Gate	Novel FPGA and PLDs; Benchmarking; Applications of
Rupture, Burnout, etc.	space-borne processing.
Destructive and Non-Destructive Effects, Nanoscale	Agile methods, ESL/HLS and model-based engineering
Phenomena, Charge Transport and Collection, Impact of	techniques, embedded processing, and synthesis
Circuit and Environmental Parameters, etc.	efficiency improvements.
SEE Mitigation: Device Level	SEE Mitigation: Circuit and System Level
SEE Mitigation Methods including Radiation Hardened	Multi-level approaches for high reliability and fault
by Design (RHBD) and by Process (RHBP): Approaches	tolerance (RHBD, redundancy, TMR, SET filtering, etc.),
for gaining SEE hardness in commercial devices, etc.	upset mitigation techniques, automated tools, etc.
Environments and Facilities :	Validation and Verification:
Space, Atmospheric, and Terrestrial environments.	Techniques and languages such as co-simulation, System
Heavy-Ion, Proton, Neutron, Pulsed Laser and Other Test	Verilog and OVM/UVM, etc. Simulation, emulation, new
Facilities. Correlation between environment and test.	tools and methods for design validation.
Device Data and Measurement:	Availability, Reliability, and Susceptibility :
Techniques for Memories, Analog/Digital Circuits,	Failure mechanisms, reliability testing and
Systems-on-Chip (SoCs), FPGAs, Optocouplers,	characterization, packaging reliability, reliable design
Photonic ICs, Power Converters, Sensors, etc.	practices.
Case Study: Devices and Systems	Case Study: Computing, Logic, and Processing
Operational Regimes and Performance Data for Systems	Novel applications of Reconfigurable computing, high-
and Devices from LEO to Interplanetary, High Altitude	performance processing and successful deployment of
Aircraft, and Terrestrial.	programmable logic, etc.
Systems and Error Rate Computation:	Research and Education:
Error Mitigation, EDAC, Multi-core Processing, and	Education Practices, Market Demands, and Retention.
Fault Tolerant Systems; Analytic, Monte Carlo, Mixed-	Training course overview and organization, Degree
Level, methods, etc.	programs, Relevant future trainings 2024.

Artificial Intelligence (AI) / Machine Learning (ML) in FPGAs/SoCs: AI / ML design considerations for reliable terrestrial, avionic, and aerospace applications; using AI for SEE mitigation; SEE evaluation of designs leveraging AI / ML

*All options subject to change any time, per the discretion of the conference committee

2025 Conference Committee

Krysten Pfau, Lockheed Martin, SEE General Chair Michael Wirthlin, BYU, MAPLD Chair Justin Likar, JHU/APL, SEE Technical Chair Michael McKenna, Missile Defense Agency; Ken LaBel, NASA (ret.), Tutorial Chairs Martha O'Bryan, SSAI / GSFC, Poster Session Chair Larissa Milic, EMPC, Exhibit Chair Teresa Farris, Archon, LLC, Meeting Planner Carl Szabo, SSAI / GSFC, A/V Chair